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Global illumination – GI 

2 

Direct illumination 



Review: 
Reflection equation 

 “Sum” (integral) of contributions over the hemisphere: 
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Emitted radiance 

Reflected rad. 



From local reflection to global light 
transport 

 Reflection equation (local reflection) 
 
 

 
 Where does the incoming radiance Li(x, ωi) come from? 

 From other places in the scene ! 
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Ray casting function 
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From local reflection to global light 
transport 

 Plug for Li  into the reflection equation 
 
 
 
 

 
 Incoming radiance Li drops out 
 Outgoing radiance Lo at x described in terms of Lo at 

other points in the scene 
 

∫ ⋅→⋅−+

=

)(
iioiiio

oeoo

dcos),()),,(r(

),(),(

x

xx

xx

H
rfL

LL

ωθωωωω

ωω

CG III (NPGR010) - J. Křivánek 2015 



Rendering equation 

 Remove the subscript “o” from the outgoing radiance: 
 
 
 
 
 

 Description of the steady state = energy balance in the 
scene 

 Rendering = calculate L(x, ωo) for all points visible 
through pixels, such that it fulfils the rendering equation 
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 Reflection equation 
 Describes local light reflection at a single point 
 Integral that can be used to calculate the outgoing 

radiance if we know the incoming radiance 

 
 

 Rendering equation 
 Condition on the global distribution of light in scene 
 Integral equation – unknown quantity L on both sides 

Reflection equation vs.   
    Rendering equation 
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Rendering Equation – Kajiya 1986 
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Path tracing sketch 
 



Recursive unwinding of the RE 

 Angular form of the RE 
 
 

 To calculate L(x, ωo), we need to calculate L(r(x, ω’), −ω’) 
for all directions ω’ around the point x 

 For the calculation of each L(r(x, ω’), −ω’), we need to do 
the same thing recursively, 

 etc. 
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Path tracing, v. zero  (recursive form) 

getLi (x, ω): 
 y = traceRay(x, ω) 
 return  
  Le(y, –ω) +    // emitted radiance 
  Lr (y, –ω)   // reflected radiance 
 
Lr(x, ω): 
 ω′ = genUniformHemisphereRandomDir( n(x) ) 
 return 2π * brdf(x, ω, ω′)  * dot(n(x), ω′) * getLi(x, ω′) 
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Back to the theory: 
Angular and area form of the 
rendering equation 



Angular vs. area form of the RE 

 Angular form 
 integral over the hemisphere in incoming directions 
 
 
 
 
 

 Substitution 
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Angular vs. area form of the RE 

 Area form 
 Integral over the scene surface 
 

 
∫ ↔⋅↔⋅→→⋅→+

=

M
r AVGfL

LL

yyxyxxyxy

xx

d)()()()(

),(),(

o

oeo

ω

ωω

2

coscos
)(

yx
yx yx

−

⋅
=↔

θθ
G

visibility 
1 … y visible from x 
0 … otherwise 

geometry term 
scene surface 

CG III (NPGR010) - J. Křivánek 2015 



Angular form 

 Add radiance contributions to a point from all directions 
 

 For each direction, find the nearest surface 
 

 Implementation in stochastic path tracing: 
 For a given x, generate random direction(s), for each find 

the nearest intersection, return the outgoing radiance at 
that intersection and multiply it with the cosine-weighted 
BRDF. Average the result of this calculation over all the 
generated directions over the hemisphere. 
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Area form 

 Sum up contributions to a point from all other points on 
the scene surface 
 

 Contribution added only if the two points are mutually 
visible 
 

 Implementation in stochastic path tracing: 
 Generate randomly point y on scene geometry. Test 

visibility between x and y. If mutually visible, add the 
outgoing radiance at y modulated by the geometry factor. 

 
 Typical use: direct illumination calculation for area 

light sources 
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Most rendering algorithms = 
(approximate) solution of the RE  

 Local illumination (OpenGL) 
 Only point sources, integral becomes a sum 
 Does not calculate equilibrium radiance, is not really a 

solution of the RE 
 

 Finite element methods (radiosity) [Goral, ’84] 
 Discretize scene surface (finite elements) 
 Disregard directionality of reflections: everything is 

assumed to be diffuse 
 Cannot reproduce glossy reflections 
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Most rendering algorithms = 
(approximate) solution of the RE  

 Ray tracing [Whitted, ’80] 
 Direct illumination on diffuse and glossy surfaces due to 

point sources 
 Indirect illumination only on ideal mirror reflection / 

refractions 
 Cannot calculate indirect illumination on diffuse and glossy 

scenes, soft shadows etc. … 
 

 Distributed ray tracing [Cook, ’84] 
 Estimate the local reflection using the MC method 
 Can calculate soft shadows, glossy reflections, camera 

defocus blur, etc. 
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Most rendering algorithms = 
(approximate) solution of the RE  

 Path tracing [Kajiya, ’86] 
 True solution of the RE via the Monte Carlo method 
 Tracing of random paths (random walks) from the camera 
 Can calculate indirect illumination of higher order 
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From the rendering equation 
to finite element radiosity 
 
 



From the rendering equation to 
radiosity 

 Start from the area form of the RE: 
 
 
 
 

 The Radiosity method– assumptions 
 Only diffuse surfaces (BRDF constant in ωi and ωo) 
 Radiosity (i.e. radiant exitance) is spatially constant (flat) 

over  the individual elements 
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From the rendering equation to 
radiosity 

 Diffuse surfaces only 
 The BRDF is constant in ωi and ωo 

 

 
 
 

 Outgoing radiance is independent of ωo and it is 
equal to radiosity B divided by π 
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From the rendering equation to 
radiosity 

 Spatially constant (flat) radiosity B of the contributing 
surface elements 
 
 ∑ ∫

= 












↔⋅⋅+=

N

j A
jj

j

AGBBB
1

,e d)(')()()( yyxxxx ρ

Radiosity of the j-th element 

Geometry factor between 
surface element j and point x 

CG III (NPGR010) - J. Křivánek 2015 



From the rendering equation to 
radiosity 

 Spatially constant (flat) radiosity of the receiving 
surface element i: 
 Average radiosity over the element 
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Classic radiosity equation 

 System of linear equations 
 
 
 

 Form factors 
 
 
 

 Conclusion: the radiosity method is nothing but a way 
to solve the RE under a specific set of assumptions 
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Radiosity method 

 Classical radiosity 
1. Form facto calculation (Monte Carlo, hemicube, …) 
2. Solve the linear system (Gathering, Shooting, …) 
 

 Stochastic radiosity 
 Avoids explicit calculation of form factors 
 Metoda Monte Carlo 

 
 Radiosity is not practical, not used 

 Scene subdivision -> sensitive to the quality of the geometry 
model (but in reality, models are always broken) 

 High memory consumption, complex implementation 
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The operator form of the RE 



RE is a Fredhom integral equation of 
the 2nd kind 

General form the Fredholm integral equation of the 2nd kind 
 
 
 
 
 

Rendering equation: 
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Linear operators 

 Linear operators act on functions 
 (as matrices act on vectors) 

 
 

 The operator is linear if the “acting” is a linear operation 
 
 

 Examples of linear operators 

( ) ( )( )h x L f x= 

( ) ( ) ( )L af bg a L f b L g+ = +  

( )( ) ( , ) ( )

( )( ) ( )

K f x k x x f x dx

fD f x x
x

′ ′ ′≡

∂
≡

∂

∫



CG III (NPGR010) - J. Křivánek 2015 



Transport operator 
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Solution of the RE in the operator 
form 
 

 
 
 
 
 
 

 Rendering equation 
 
 
 

 Formal solution 
 
 
 
 
 unusable in practice – the inverse cannot be 

explicitly calculated 
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Expansion of the rendering equation 

 Recursive substitution L 
 
 
 
 
 

 n-fold repetition yields the Neumann series 
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Expansion of the rendering equation 

 If T is a contraction (tj. ||T|| < 1, which holds for the 
RE), then 
 
 
 

 Solution of the rendering equation is then given by  
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A different derivation of the Neumann 
series 

 Formal solution of the rendering equation 
 
 

 Proposition 
 

 Proof 
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 Solution: Neumann series 
 

 

Rendering equation 
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Progressive approximation 

 Each application of T corresponds to one step of 
reflection & light propagation 
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Contractivity of T 

 Holds for all physically correct models 
 Follows from the conservation of energy 
 

 It means that repetitive application of the operator lower 
the remaining light energy (makes sense, since 
reflection/refraction cannot create energy) 
 

 Scenes with white or highly specular surfaces 
 reflectivity close to 1 
 to achieve convergence, we need to simulate more bounces 

of light 

CG III (NPGR010) - J. Křivánek 2015 



Alright, so what have we achieved? 

 
 
 

 We have replaced an integral equation by a sum of 
simple integrals 

 Great we know how to calculate integrals numerically 
(the Monte Carlo method), which means that we know 
how to solve the RE, and that means that we can render 
images, yay! 

 Recursive application to T corresponds to the recursive 
ray tracing from the camera 
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What exact integral are we evaluating, 
then? 
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Paths vs. recursion: Same thing, 
depends on how we look at it 

 Paths in a high-dimensional path space 
 
 
 

 Recursive solution of a series of nested (hemi)spherical 
integrals: 
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Recursive interpretation 

 Angular form of the RE 
 
 

 To calculate L(x, ωo) I need to calculate L(r(x, ω’), −ω’) 
for all directions ω’ around the point x. 

 For the calculation of each L(r(x, ω’), −ω’) I need to do 
the same thing recursively 

 etc. 
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We’ve seen this already, right?  
But unlike at the beginning of  
the lecture, by now we know this 
actually solves the RE. 



Path tracing, v. zero  (recursive form) 

getLi (x, ω): 
 y = traceRay(x, ω) 
 return  
  Le(y, –ω) +    // emitted radiance 
  Lr (y, –ω)   // reflected radiance 
 
Lr(x, ω): 
 ω′ = genUniformHemisphereRandomDir( n(x) ) 
 return 2π * brdf(x, ω, ω′)  * dot(n(x), ω′) * getLi(x, ω′) 
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Path tracing, v. 2012, Arnold Renderer 
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Path tracing [Kajiya86] 

 Only one secondary ray at each intersection 
 Random selection of interaction (diffuse reflection, 

refraction, etc., …) 
 Direct illumination: two strategies 

 Hope that the generated secondary ray hits the light source, 
or 

 Explicitly pick a point on the light source 
 Trace hundreds of paths through each pixel and average 

the result 
 Advantage over distributed ray tracing: now branching of 

the ray tree means no explosion of the number of rays 
with recursion depth 
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